Pioneer Journal of Algebra, Number Theory and its Applications

AN ALGEBRAIC PROOF OF FERMAT'S LAST THEOREM

James E. Joseph

Received February 17, 2015

Abstract

In 1995, A. Wiles announced, using cyclic groups, a proof of Fermat's Last Theorem, which is stated as follows: If π is an odd prime and x, y, z are relatively prime positive integers, then $z^{\pi} \neq x^{\pi}+y^{\pi}$. In this note, a proof of this theorem is offered, using elementary Algebra. It is proved that if π is an odd prime and x, y, z are positive integers satisfying $z^{\pi}=x^{\pi}+y^{\pi}$, then x, y and z are each divisible by π.

Keywords and phrases: Fermat.

